Dissipative quasi - geostrophic equations with initial data

نویسنده

  • Amina Lahmar-Benbernou
چکیده

In this paper, we study the solutions of the initial-value problem (IVP) for the quasi-geostrophic equations, namely ∂tθ + u.∇θ + κ (−∆) θ = 0, on R × ]0,+∞[ , θ (x, 0) = θ0(x), x ∈ R. Our goal is to establish the existence and uniqueness of regulars solutions for the two-dimentional dissipative quasi-geostrophic equation with initial data in a Sobolev space H satisfying suitable conditions with a critical or super-critical fractional power of the Laplacian for which the dissipation is insufficient to balance the nonlinearity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Regularity for the Critical and Super-critical Dissipative Quasi-geostrophic Equations

We study the critical and super-critical dissipative quasi-geostrophic equations in R or T. Higher regularity of mild solutions with arbitrary initial data in Ḣ is proved. As a corollary, we obtain a global existence result for the critical 2D quasigeostrophic equations with periodic Ḣ data. Some decay in time estimates are also provided.

متن کامل

Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation

Motivated by the critical dissipative quasi-geostrophic equation, we prove that drift-diffusion equations with L initial data and minimal assumptions on the drift are locally Holder continuous. As an application we show that solutions of the quasigeostrophic equation with initial L data and critical diffusion (−∆), are locally smooth for any space dimension.

متن کامل

Finite Time Singularities for a Class of Generalized Surface Quasi-geostrophic Equations

We propose and study a class of generalized surface quasi-geostrophic equations. We show that in the inviscid case certain radial solutions develop gradient blow-up in finite time. In the critical dissipative case, the equations are globally well-posed with arbitrary H1 initial data.

متن کامل

A Maximum Principle Applied to Quasi-Geostrophic Equations

We study the initial value problem for dissipative 2D Quasi-geostrophic equations proving local existence, global results for small initial data in the super-critical case, decay of L-norms and asymptotic behavior of viscosity solution in the critical case. Our proofs are based on a maximum principle valid for more general flows.

متن کامل

Global Well-posedness and a Decay Estimate for the Critical Dissipative Quasi-geostrophic Equation in the Whole Space

We study the critical dissipative quasi-geostrophic equations in R with arbitrary H initial data. After showing certain decay estimate, a global well-posedness result is proved by adapting the method in [11] with a suitable modification. A decay in time estimate for higher order homogeneous Sobolev norms of solutions is also discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008